Another project focuses on investigating the use nanostructures for vaccination procedures. The research summarises the approaches used for nanostructure based vaccination. Inoculation is a one of the most advanced methods of public health management systems. As vaccine production gradually shifts towards subunit structure, based on current ideas of practical design and enhanced safety outline, new adjuvant designs and distribution processes are gradually required to enhance the immunogenicity of the simple vaccines.
The project focuses on integrating vaccine production processes with nano-engineering, advancing vaccine systems that distribute vaccines at an amount and swiftness that cannot be achieved with the presently accepted vaccine production methods. The system applies self-integrations of virus-related capsid nutrients that create a pentameric system, referred to as capsomere, as a distribution method to current antigenic units from target infections (Wibowo 2014). Possessing virus-related molecular characteristics, sectional capsomere catalyses possible immune responses that may be enhanced through nanoparticle enhanced production. The research focused on vaccine modelling, bioprocessing, and production.
The section of vaccine modelling focuses on the strategies and mechanical systems used in antigenic units (Wibowo 2014). Bioprocessing investigates protein expression, cleansing, and procedure optimisation, and detailed protein classification, from simple to complex protein conditions (Wibowo 2014). Vaccine production investigates the application of modern nanotechnology to produce viral nano-elements. The outcome of the project will motivate a vaccine technology that may quickly change the methods currently applied for fighting viral infections (Wibowo 2014).