The Fischer-Tropsch Synthesis refers to the process in which a mixture of gases is converted to several liquid fuels (Song, Ramkrishna, Trinh and Wright 2004). Usually, such fuels are obtained from different sources such as biomass, natural gas, or even coal. When the process of synthesis and separation is complete the FTS is upgraded and the resultant liquid used in transportation as fuel. On the other hand, products that are not fuels are often cracked in the presence of hydrogen to achieve the respective fuels, or even in some cases recycled back into the FTS (Kengne and others 2015).
The reaction during the Fischer-Tropsch Synthesis results in the production of water and hydrocarbons in the presence of a catalyst. Often, the hydrocarbons produced during the reaction are α-olefins and n-paraffins, ranging from methane to heavy waxes. In spite of this, the process can also produce some other molecules like aldehydes, alcohols, and branched paraffins alongside the α-olefins and n-paraffins.