the review of literature showed that even though the use of bi-functional catalysts has been in existence for long, it is not economically successful and hence a suitable alternative is needed. The periodic Fischer-Tropsch reactor operation can be used in the place of bi-functional catalysts since, the periodic operation take into consideration the time-average rate as opposed to steady-state conditions, promotes the life of any catalyst used, as well as enhances selectivity during the process. Besides, the periodic operation is a suitable substitute of bi-functional catalysts in that it enhances the removal of any hydrocarbon chains that may form on the surface of the catalyst used in FTS. Generally, the review of literature showed that periodic operation in Fischer-Tropsch process helps to maximize the yield of the fuel.
A number of outcomes are expected from the overall project. First, it is expected that the periodic operation with hydrogen, as the reagent will lead to an increase in the rate of Co conversion. In addition, the selectivity of the catalyst will be increased following increased exothermic reaction. Such conditions will affect the activity of the catalyst with the focus being on the possibility of achieving the steady state value. This implies that the selectivity of methane can be restored after a while in the case of periodic operation. Secondly, it is expected that there will be a correlation between the formation of the hydrocarbons (in this case methane) and the concentration of the pulsing reagent. Increasing the temperatures of the synthesis will have an enormous effect in the activity of the catalysts, as well as in the formation of the concerned hydrocarbon since high temperatures favor the production of CO2Â and water. In addition, such a condition is expected to increase the ratio of olefin and paraffin in cases involving light hydrocarbons. However, it is expected that the increase of temperatures alongside a periodic operation reagent will decrease the olefin/paraffin ratio.